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Abstract

This article re-visits the evidence of crude oil return predictability resulting from the
use of returns calculated from monthly averages of daily WTI crude oil prices. We
show that averaging daily prices introduces spurious serial correlation in returns, and
generate estimates of variance and covariance that are biased downwards, findings
consistent with the predictions of Working (1934, 1960) and Schwert (1990). As a by-
product, regression estimates of beta and associated standard errors are also biased
leading to false inference about the true extent of crude oil return predictability.
On the hand, crude oil returns calculated from end-month-prices does not suffer
from these biases, and display statistically insignificant evidence of predictability
reversing the conclusions of previous studies. Correcting returns for the effect of
averaging using the filtering procedure in Schwert (1990) substantially weakens the
evidence of predictability. The predictability that remains can be attributed to the
bias in the estimates of covariance between returns and predictors that persists even
after the correction.
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1. Introduction

Large fluctuations in crude oil prices have been shown to have a substantial impact on

the real economy and financial markets (Hamilton, 1996, 2011; Baumeister and Peersman,

2013; Hou, Mountain, and Wu, 2016; Kilian and Vigfusson, 2017). For example, Hamilton

(1983, 2009) show that most U.S. recessions have been preceded by large oil price increases.

Reliable forecasts of crude prices are therefore important and required by institutions such

as central banks and governments as they serve as a key input in inflation forecasting,

play an important role in explaining fluctuations in and projecting economic activity, and

are widely used by firms engaged in the production, marketing and processing of crude

oil for risk management purposes (Black, 1976). It is therefore not surprising that there

is a voluminous literature devoted to studying the predictability of crude oil returns, and

how to improve these forecasts (Alquist and Kilian, 2010; Baumeister and Kilian, 2012;

Alquist, Kilian, and Vigfusson, 2013; Baumeister and Kilian, 2014, 2015; Baumeister,

Kilian, and Lee, 2014; Wang, Liu, Diao, and Wu, 2015; Yin and Yang, 2016; Zhao, Li,

and Yu, 2017; Wang, Liu, and Wu, 2017; Zhang, Ma, Shi, and Huang, 2018; among

others).

Many of the time series data on key financial and economic variables, including crude

oil prices, widely published by popular database sources such as the Federal Reserve

and it various agencies, the OECD, the Global Financial Database, and the U.S. Energy

Information Administration (EIA) are time-averaged data rather than end-of-period data.

This suggests different statistical properties for both series. For example, a note to the

release of energy spot prices by the EIA states:

Explanatory Notes: Weekly, monthly, and annual prices are calculated by EIA

from daily data by taking an unweighted average of the daily closing spot prices

for a given product over the specified time period.

2



Working (1934, 1960) and Schwert (1990) show that returns computed from month

averages of daily data are spuriously autocorrelated, and estimates of variance and cov-

ariance with other variables are downward biased reducing return variability. Such data

when used in regression analysis will generate biased estimates of regression coefficients

and associated standard errors ultimately leading to potentially false inference in hypo-

thesis testing. Early studies of predictability confirm these predictions. For example,

Cowles and Jones (1937) analyses monthly averages of weekly stock prices from 1918 to

1938 and find evidence of predictability. The study of Kendall and Hill (1953) also find

evidence of predictability using monthly averages of daily cotton prices but no evidence

of predictability in wheat prices compiled without averaging. Working (1960) notes that

the evidence of predictability in both studies could simply be the effect of averaging, and

once this is taken into account there remains no clear evidence of predictability. Wilson,

Jones, and Lundstrum (2001) confirm the predictions of Working and Schwert using U.S.

S&P 500 Composite Index returns.

Notwithstanding the documented and potentially serious problems associated with the

use of averaged data, which has been known, a voluminous amount of research devoted

to the study of crude oil return predictability use monthly averaged data.1 The findings

from these studies are that return forecasts generated by predictive regression models of

returns and their combinations significantly outperform forecasts from a simple random

walk with drift (RW) benchmark model.

In this article, we comprehensively re-examine the empirical evidence of the predictab-

ility of WTI crude oil return from January 1987 to December 2018. As predictors, we use

a large set of 46 popular economic and technical indicator variables studied widely in the

oil forecasting literature covering the commodity, stock, bond, currency markets and the

macroeconomy. We compare the estimates of autocorrelation, variance and covariance
1The use of monthly averages of daily prices is the convention used in much of the studies in crude oil
forecasting literature. See Table 1 for a list of articles across asset markets and the price data series
they used in computing returns.
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between returns and predictors using monthly average return computed from daily prices,

end-of-month returns2 and monthly average return corrected for autocorrelation and bias

in variance following the return filtering procedure in Schwert (1990).

We further investigate in-sample and out-of-sample oil predictability in a predictive

regressions for each of the individual predictors at a time. We argue that the evidence

of predictability reported in prior studies can be attributed to the aforementioned bi-

ases induced as a result of averaging. To gain power against the null hypothesis of no

crude oil return predictability, we also consider forecast combination methods that com-

bine the individual predictive model forecasts using different combining weights. Recent

studies on crude oil return predictability such as Baumeister et al. (2014), Baumeister

and Kilian (2015), Wang et al. (2015), Wang et al. (2017), Yin and Yang (2016), Naser

(2016), and Zhang et al. (2018) also consider forecasting combination models to provide

insurance against parameter instability and model uncertainty that plague individual pre-

dictive models, which affect their performance (see, for example, Stock and Watson, 2004;

Baumeister and Kilian, 2015; and the references therein). As also noted by Baumeister

and Kilian (2015), considering forecast combinations is useful because even when the most

accurate forecasting models do not work equally well at all times.

Our results confirm the predictions of Working (1960) and Schwert (1990). There is

a significantly high first-order autocorrelation in returns and estimate of variance and

covariance are biased downwards compared to end-of-month returns. Filtering returns for

the effect of averaging removes these two of theses biases. For example, monthly average

(end-of-month) returns have a first-order autocorrelation of 0.286 (0.150) and variance of

68.59% (83.92%). Filtered returns, on the other hand, has a first order autocorrelation of

0.025 and a variance of 97.66%. However, the bias in the estimate of covariance between
2Returns computed from end-of-period prices is the convention used in much of of the return predictability
literature. See, for example, Acharya, Lochstoer, and Ramadorai (2013), Chinn and Coibion (2014),
Campbell and Thompson (2008), Neely, Rapach, Tu, and Zhou (2014), Sarno, Schneider, and Wagner
(2016), Lin, Wu, and Zhou (2017), Levich and Potì (2015), and Li, Tsiakas, and Wang (2015). A
comprehensive list is provided in Table 1.
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filtered returns and predictors remain.

In predictive analysis, most of the individual economic and technical indicator variables

we consider display statistically significant forecasting power, both in- and out-of-sample,

for monthly average crude oil returns compared to forecast from the RW model. The com-

bination forecasts of monthly average returns display substantial degree of predictability.

However, these conclusions are completely reversed when we use end-of-month crude oil

returns as the dependent variables in our forecasting models. That is, we find no evidence

of predictability both in and out-of-sample forecasts from the univariate and combina-

tion models. Although filtered returns also display statistically significant evidence of

predictability, this evidence, however, is much weaker. We attribute this to the bias in co-

variance estimate that persistent even after corrected returns for spurious autocorrelation

and downward bias in variance.

We attribute the differing conclusions of predictability for the two return series to the

significantly high first-order autocorrelation in and downward bias in variance estimate

of monthly average returns. To test this hypothesis, we estimate univariate predictive

regression of returns on it own lagged value, as well as multivariate regression models of

returns on its own lagged value and the lag of each of the predictors at a time. The results

from this test show that whereas exploiting the presence of serial correlation in monthly

average return substantially improves the forecasting performance of the models relative

to the RW forecast, such evidence is non-existent when we use end-of-month returns as

the dependent variable in our forecasting models. This confirms our hypothesis that the

presence of serial correlation in crude oil returns, which is severe in the monthly average

returns, is what account for the evidence of predictability reported in the majority of the

extant literature on crude oil return predictability.

The rest of the paper is organised as follows. Section 2 describes the oil price data

used in computing returns, the predictor variables used in investigating return predict-

ability, and offers preliminary data analysis. In Section 3, we describe the methodology
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for predicting crude oil returns. The empirical analysis of in-sample and out-of-sample

performance of crude oil return forecasts is in Section 4. Section 5 concludes.

2. Data

2.1. Crude oil returns

Daily prices and monthly averages of daily prices of WTI crude oil spot are obtained

from the website of the U.S. Energy Information Administration (EIA).3 From the daily

prices, we build end-of-month price series. Real log returns at time t are computed

as rt = ln(Rpt) − ln(Rpt−1), where Rpt = npt/cpit is the real price of crude oil, npt

is the nominal price of crude oil, and cpit is the U.S. consumer price index. We will

refer to returns computed using end-of-month prices as end-of-month returns, and those

computed using monthly average prices as monthly average returns. We also follow the

filtering procedure in Schwert (1990) to correct monthly average returns for spurious

autocorrelation and biased variance. Schwert (1990) first estimates a first-order moving

average (MA(1)) process,

Rt = µ+ θεt−1 + εt, (1)

where Rt is the monthly average returns and θ is the moving average parameter. The

author notes that θ should be about 0.3 since the first-order autocorrelation from an

MA(1) process is θ/(1 + θ2) = 0.27. An estimate of return is then given by R̂t = µ̂ + ε̂t.

This new estimate has the same mean as the original monthly average returns, but no first-

order correlation and a variance estimate that is biased downward compared to that of

original data series. To solve for the downward bias in the estimate of variance, Schwert

(1990) propose to multiply the errors ε̂t by a factor [1.2(1 + θ2)1/2)] which results in

standard deviation 20% larger than the standard deviation of the original series. The
3https://www.eia.gov/
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new estimate of return, which we denote as filtered returns is

R̂t = µ̂+ ε̂t[1.2(1 + θ̂2)1/2], (2)

where µ̂, θ̂ and ε̂t are from (1).

Our analysis focus on monthly crude oil returns from January 1987 to December 2016

period. This sample covers the period used by many of the crude oil return predictability

studies we cite in this paper. Because the data used in our analysis differs from the

dataset used in existing studies of crude oil return predictability, it is worth highlighting

the main differences. The main difference is what price series are used in computing

returns. Studies such as Baumeister and Kilian (2012), Baumeister and Kilian (2014),

Wang et al. (2017), Zhang et al. (2018), and the references therein, use monthly crude oil

returns computed from monthly averages of daily prices of WTI crude oil spot obtained

from the website of the EIA. We compute crude oil returns using end-of-month prices

extracted from daily oil prices. Our approach therefore follows the convention in most of

the studies on stock, bond, currency, and commodity return predictability. Table 1 lists

articles and the price series used in computing returns across the various asset markets.

[Insert Table 1 about here]

The reasons provided for the use of monthly average returns are first, the average price

mitigates one-day market perturbations resulting from rumours, and is less noisy; second,

average returns generates better results; and third, the high correlation between monthly

average and end-of-month returns (Ye, Zyren, and Shore, 2006). Over the sample period

under consideration, the correlation between the monthly average returns and end-of-

month returns was 0.72. Although this correlation is quite high, it is not nearly perfect.

As such, it is likely that the analysis of returns may lead to different inferences being drawn

about the degree of return predictability. We are of the view that using monthly average

returns is erroneous from the point of view of both forecasting and making inferences
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about key macroeconomic variables. For the purposes of budgeting, the consumers may

wish to know how much they are likely to pay for their crude oil needs on average, in

which case the average price may be of interest. However, for policy makers, central

banks, and firms involved in the marketing and production of crude oil, and for risk

management purposes, the end-of-period price may be the most appropriate. A further

criticism from using the monthly average price is that it is not realizable and may not

have been available to both consumers and forecasters in real time. Notwithstanding the

limitations from using monthly average returns, we are of the view that it serves as a

good lower bound on the degree of return predictability that is attainable inline with the

second reason provided for their use.

Panel A of Table 2 presents descriptive statistics for the three return series. The mean

of monthly average returns is almost twice that of the end-of-month returns with much

lower standard deviation. Filtered returns has the same mean as monthly average returns

but a higher standard deviation of about 20% larger. The last three columns of Table 2

reports the results for the correlation between returns and predictor variance. As can

be seen, filtering returns for the effect of averaging has a little effect on the covariance

estimates. These three findings are consistent with the predictions of Working (1960) and

Schwert (1990).

Figure 1 plot the time series of the two return series which shows very similar volatility

patterns. Monthly average returns are also more left skewed and fat-tailed than the end-of-

month returns. Monthly average returns have first-order autocorrelation of 0.30 compared

to 0.15 for the end-of-month returns. Figure 2 plots the sample autocorrelation function

up to 36 lags with 95% confidence bands for the three return series. As shown by the

autocorrelation plots, filtering returns remove autocorrelation as none is significant up to

36 lags. Figure 3 also plots the autocorrelation function of squared returns. The figure

shows substantial evidence of autocorrelation of squared returns suggesting that the data

is heteroskedastic, and therefore test statistics that account for this feature of the data as
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well as autocorrelation should be used.

[Insert Table 2 about here]

[Insert Figure 1 about here]

[Insert Figure 2 about here]

[Insert Figure 3 about here]

2.2. Predictor variables

We consider a set of 46 predictor variables: 28 economic variables and 18 technical indic-

ators that have been used in studies on crude oil return predictability (see, for example,

Fama and French, 1987; Bessembinder, 1992; Gargano and Timmermann, 2014; Hong

and Yogo, 2012; Chen, Rogoff, and Rossi, 2010; Groen and Pesenti, 2011; Basu and

Miffre, 2013; Baumeister, Kilian, and Zhou, 2017; among others). They include commod-

ity market, financial market, treasury and corporate bond markets, and macroeconomic

variables.4

2.2.1. Economic variables

1. Commodity market variables: The first set of 10 predictors are variables selected

from the commodity return predictability literature, and are analysed in studies such

as Fama and French (1987), Bessembinder (1992), De Roon, Nijman, and Veld (2000),

Coppola (2008), Hong and Yogo (2012), Basu and Miffre (2013), Gorton, Hayashi, and

Rouwenhorst (2013), Kilian and Murphy (2014), Baumeister et al. (2017), among others.

The consideration of this set of predictors is motivated by the fact that they are related

to the classical commodity pricing theories of storage and normal backwardation. For
4Further details and the rational for considering these predictors for commodity returns are provided in
the Appendix.
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example, the theory of storage of Kaldor (1939), Working (1948), and Brennan (1958)

explain the dynamics of the commodity futures prices by linking basis, the difference

between the contemporaneous spot and futures price, to the cost of storage and the risk

premium for holding inventory. When inventories are high, basis is low since futures

prices are expected to fall with maturity leading to high expected returns. The theory of

normal backwardation of Keynes (1930), Hicks (1939), and Cootner (1960) on the hand

posits that hedgers use the futures market to transfer risk to speculators in the process

paying a significant risk premium to them. The net position of hedgers or a measure

of supply-demand imbalances in the commodity futures markets, also known as hedging

pressure, is what dictates, in equilibrium, the compensation to be paid. When hedgers

are net long, futures prices are expected to decrease leading to high expected returns.

The variables are: Futures return, basis, hedging pressure (HP), price pressure (PP), open

interest growth (OI), crude oil crack spread (SCS), Gasoline spot spread (GSS), Heating

oil spot spread (HSS), global crude oil inventory (GOI), and global crude oil production

(GOP).

2. Currency market variables: The second set of predictors consist of 4 “commodity

currencies" studied in Chen et al. (2010), Groen and Pesenti (2011), and Gargano and

Timmermann (2014).5 Chen et al. (2010), for example, exploit the notion that changes

in commodity currencies are correlated with commodity prices. Therefore the movement

in the currencies of major commodity exporting countries where commodities represent

a quarter to one-half of their total export earnings should be informative commodity

returns. We consider the log exchange rate of the currencies of following countries against

the US dollar obtained from Bloomberg: Australia (AUS), Canada (CAN), New Zealand

(NZ), and South Africa (SA).

3. Stock, treasury and corporate bond market variables: The third set of 9 predictors
5Commodity currencies, as defined in Chen et al. (2010), refer to the few floating currencies that co-
move with the world prices of primary commodity products, due to the countries’ heavy dependence on
commodity exports.
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is drawn from the stock and bond return predictability literature. The fact that most

of these variables are economic activity variables and therefore track the business-cycle,

and have been shown to explain expected returns on stocks and bonds (Fama and French

(1989)) is the reason why we consider them. These variables are also chosen based on

recent evidence in Irwin and Sanders (2011), Tang and Xiong (2012), and Hamilton and

Wu (2015) of the financialization of commodities that has increased their correlation

with stocks and bonds. As such, by considering this set of variables, we are essentially

imposing the assumption of market integration. The predictors are S&P 500 stock index

return (S&P 500 return), 3-month treasury bill rate (TBL), change in treasury bill rate

(CTBL), yield spread (YS), default yield spread (DFY), 1-year term spread (TMS1Y),

2-year term spread (TMS2Y), 5-year term spread (TMS5Y), and VIX.

4. Macroeconomic variables: The final set of predictors include 7 macroeconomic

variables that measure the broad state of the economy. These variables are analysed in

studies such as Pagano and Pisani (2009), Kilian (2009), Hong and Yogo (2012), Groen and

Pesenti (2011), Gargano and Timmermann (2014), Baumeister and Kilian (2015), among

others. The variables we consider are global real economic activity index (REA), Baltic

Dry Index (BDI), inflation (INFL), degree of capacity utilization in US manufacturing

(CUTIL), industrial production growth (INDPRO), OECD composite leading indicator

(CLI), and OECD business confidence index (BCI).

2.2.2. Technical indicators

We investigate the predictive ability of 18 popular technical indicator variables (Sullivan,

Timmermann, and White, 1999; Miffre and Rallis, 2007; Szakmary, Shen, and Sharma,

2010; Fuertes, Miffre, and Rallis, 2010; Neely et al., 2014; Yin and Yang, 2016) based

on three trading rules, namely moving-average (MA) rule, momentum (MOM) rule, and

on-balance volume (VOL) rule.

The MA rule generates a buy or sell signal, (si,t = 1 or si,t = 0, respectively) at the
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end of t by comparing the averages:

si,t =


1, if MAk,t ≥ MAl,t,

0, if MAk,t < MAl,t,

(3)

where

MAj,t = (1/j)
j−1∑
j=0

Pt−1, for j = k, l; (4)

Pi,t is the level of crude oil prices, and k(l) is the length of the short (long) MA(k < l).

The MA indicator with length k and l is denoted by MA(k, l). The MA rule detects

movements in prices. We should therefore expect the short MA to be more sensitive to

recent movements in crude oil prices compared to the long MA. In our empirical analysis,

we consider MA rules with k = 1, 2, 3 and l = 9, 12.

The MOM rule generates a buy or sell signal, (si,t = 1 or si,t = 0, respectively) at the

end of t by comparing the current oil to its level m periods ago:

si,t =


1, if Pt ≥ Pt−m,

0, if Pt < Pt−m, ,

(5)

Intuitively, if the current crude oil price is higher than its level m periods ago indicates

“positive" momentum and relatively high expected excess returns, thereby generating a

buy signal. We denote the momentum indicator that compares Pt to Pt−m by MOM(m),

and we compute monthly signals for m = 1, 2, 3, 6, 9, and 12

The VOL rule employ volume data together with past prices to identify crude oil

market trends. Define on-balance volume (OBV) as

OBVt =
t∑

k=1
VOLkDk (6)
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where VOLkDk is a measure of trading volume during period k and Dk is a binary variable

that takes a value 1 if Pk − Pk−1 ≥ 0 and −1 otherwise. We then form a trading signal,

(si,t = 1 or si,t = 0, respectively) at the end of t, from OBVt by comparing two moving

averages as

si,t =


1, if MAOBV

k,t ≥ MAOBV
l,t ,

0, if MAOBV
k,t < MAOBV

l,t ,

(7)

where

MAOBV
j,t = (1/j)

j−1∑
i=0

OBVt−i, for j = k, l. (8)

The intuition behind this rule is that recent high volume together with recent price in-

creases, for example, indicate a strong positive market trend and therefore generates a

buy signal. We analyse VOL rules with k = 1, 2, 3 and l = 9, 12.

Following Yin and Yang (2016), we use the closing price of the 1-month to matur-

ity WTI crude oil futures (contract 1) traded on the New York Mercantile Exchange

(NYMEX). The data is downloaded from the EIA database. The volume data for the

same contract is obtained from the commitments of traders report published by the U.S.

Commodity Futures Trading Commission. These price and volume data are used in Equa-

tions (3), (5), and (7).

Panel B of Table 2 reports summary statistics for the predictor variables. First-order

autocorrelation of around -0.037 to 0.99 with of the predictors showing strong persistent.

3. Prediction models for crude oil returns

In this section, we introduce the return prediction models and describe the estimation

method and the statistical tests used in evaluating out-of-sample crude oil return forecasts.
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We consider 48 individual predictive models and 28 forecast combination models based

on the 28 and 18 economic and technical indicator variables, respectively, described in

the previous section.

3.1. Individual predictive models

Consider the following univariate predictive regression model for excess commodity re-

turns,

rt+1 = αi + βixi, t + εi,t+1, (9)

where rt+1 is the realized log return on crude oil from time t to t + 1, xi, t is a predictor

available at time t, and εi,t+1 is a zero-mean error term. By replacing xi,t with si,t from

Equations (3), (5) and (7) yields the predictive model of crude oil returns based on the

individual technical indicator variables.

The step-ahead forecast of log returns is given by

r̂t+1 = α̂t + β̂txi, t, (10)

where α̂i and β̂i are the OLS estimates of αi and βi in Equation (9), respectively.

3.2. Forecast combination models

In light of the poor out-of-sample forecasting performance of individual predictive model

forecast of asset returns as a results of structural instability of the underlying models

(Welch and Goyal, 2008; Baumeister and Kilian, 2012), we also consider forecast com-

bination methods. Combination forecasts incorporate information from many predictors

and therefore should provide insurance against model uncertainty and parameter instabil-

ity of the individual predictive models. Our combination forecasts differ in the way we

compute weights assigned to the individual predictive model forecasts. Forecast combin-
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ation methods have been shown in oil return predictability studies such as Baumeister

et al. (2014), Baumeister and Kilian (2015), Naser (2016), Drachal (2016), Zhang et al.

(2018), among others, to lead to improved forecasts. As noted by Timmermann (2008),

which combination method is ex ante optimal is an empirical question and justifies why

we consider different forecast combination methods.

Let r̂i, t+1 denote the pseudo out-of-sample forecast of the realization rt+1 computed at

time t based on the ith predictor variable as given by Equation (10). Most of the forecast

combination methods we consider take the following form:

r̂cf
t+1 =

N∑
i=1

wi, tr̂i, t+1, (11)

where r̂cf
t+1|t is the combination forecast and wi, t is the weight assigned to the ith forecast

with ∑N
i=1 wi, t = 1.

The first set of combining methods we consider use simple averaging schemes: mean,

trimmed mean, median, and weighted-mean forecasts. Rapach, Strauss, and Zhou (2010),

for example, find that simple methods work well for forecasting the U.S. equity risk

premium. The mean combination forecast, r̂Mean
t+1 , is the average of the N individual

forecasts that assign equal weights, wi, t = 1/N, i = 1, ..., N , to each forecast defined in

Equation (10):

r̂
Mean
t+1 = 1

N
r̂1, t+1 + 1

N
r̂2, t+1 + ...+ 1

N
r̂N, t+1. (12)

The trimmed mean forecast, r̂Trimmed mean
t+1 , sets the wi, t = 0 for the smallest and largest

forecasts, and wi, t = 1/(N − 2) for the remaining individual forecasts in Equation (11).

The median combination forecast, r̂Median
t+1 , is the sample median of the N individual

predictive model forecasts. The weighted-mean forecast (r̂Weighted-mean
t+1 ) proposed by Bates

and Granger (1969) specifies the combination weights to be proportional to the inverse of

the estimated residual variance, σ2
i, t, for the individual predictive regression models given
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by Equation 9,

r̂
Weighted mean
t+1 =

1/(σ̂2
1, t)∑N

i=1 1/(σ̂2
i, t)

r̂1,t+1 +
1/(σ̂2

1, t)∑N
i=1 1/(σ̂2

i, t)
r̂2,t+1 + ...+

1/(σ̂2
1, t)∑N

i=1 1/(σ̂2
i, t)

r̂N,t+1, (13)

The second set consist of various performance-based combination forecasts. First,

we compute the discounted mean squared forecast error (DMSFE) combination forecast

following Stock and Watson (2004). Here, the combining weights are specified as functions

of the historical performance of the individual predictive model forecasts over a holdout

out-of-sample period,

wdmsfe
i, t =

φ−1
i, t∑N

j=1 φ
−1
j, t

, φi, t =
t−1∑
s=1

θt−1−s (rs+1 − r̂i, s+1) (14)

where θ is the discount factor.6 When θ < 1, greater importance is attached to the indi-

vidual predictive model forecast with lower mean square forecast error (MSFE). That is,

the individual predictive model that generates the least MSFE is assigned a greater weight

because it signals better forecasting performance. In the special case where there is no dis-

counting (θ = 1) and forecasts are uncorrelated leads to the optimal combination weights

proposed by Bates and Granger (1969) given by Equation (13). We consider θ values of

0.7 and 0.9. Rapach et al. (2010) also show that the DMSFE combination forecasts of

US equity risk premium consistently outperforms a constant expected return benchmark

forecast. Second, we consider Approximate Bayesian Model Averaging (ABMA) combin-

ation forecast following Garratt, Lee, Pesaran, and Shin (2003) and choose the combining

weights as follows:

wabma
i, t = exp(4i,t)∑N

j=1 exp(4i,t)
, (15)

where 4i,t = AICi,t − maxj(AICj,t) and AICi,t is the Akaike Information Criterion of
6The DMSFE combination forecast require a holdout evaluation period to estimate the combining weights.
However, note that the first out-of-sample forecast of this method is simply calculated as the mean
combination forecast because there is no past individual forecast used to form the DMSFE weight at
this time point.
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model i. The ABMA thus gives higher weight to models with better historical fit as

measured by the AIC. The Bayesian model has the advantage that, in addition to deal-

ing with structural instability and model uncertainty, it also deals with estimation errors

surrounding the parameters of the predictive models. Third, Elliott, Gargano, and Tim-

mermann (2013, 2015) propose a new class of combination forecast which they call Subset

regression forecast. Their approach uses equally weighted combination of forecasts based

on all possible predictive regression models that include a subset of the predictor vari-

ables. As noted by the authors, by keeping the number of predictors to be included in the

predictive model fixed, they are able to control estimation error by trading off the bias and

variance of the forecast errors similarly to generating the mean-variance efficient frontier

of individual assets in portfolio theory. Suppose the number of potential predictors that

enter a regression is K. A subset regression is then defined by the set of regression models

that include a specified number of regressors, k ≤ K. The k ≤ K dimensional subset

forecasts are then averaged to generate the forecasts. In our analysis, we use a maximum

K value of 7. Given K regressors in full and k regressors chosen for short models, one

has to average over CK
k = K!/(k!(K − k)!) subset regression forecasts. As a special case,

when k = 1 results in the mean combination forecast given by Equation (12). Generally,

the subset regression forecast is given by

r̂
Subset
t+1 = 1

CK
k

CK
k∑

i=1
β̂i, tx

′
i, t, (16)

where dim(xi, t) = k.

As our finally combination method, we generate out-of-sample forecast by estimating

a predictive regression based on diffusion index that assumes a latent factor structure

following Stock and Watson (2002a,b):

r̂pc
t+1 = α̂ +

K∑
k=1

β̂k, tFk, t, (17)
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where Fk, t is the kth principal component extracted from the 28 predictor variables. Dif-

fusion indices provide a convenient way of extracting common factor from a large number

of potential predictor variables. Neely et al. (2014), for example, show that this approach

improves US equity premium forecasting. We consider models where the principal com-

ponents are selected via the Akaike information criterion (AIC),7 the Bayesian information

criterion, and the adjusted R2 statistical model selection criterion. We set the maximum

number of principal components to 4.

3.3. Random walk with drift model

The random walk with drift (RW) forecast is a popular benchmark forecast that has been

used widely in studies on commodity return predictability (see, for example, Alquist and

Kilian (2010), Chinn and Coibion (2014), Ahmed and Tsvetanov (2016) and the references

therein). The use of the RW return forecast as the benchmark is consistent with the hypo-

thesis that commodity futures prices follow a random walk so returns are unpredictable.

Under the null hypothesis of no predictability, the model assumes a constant return:

rt+1 = α + εt+1, (18)

where rt+1 is log real return on crude oil. We use the forecast from this model as the

benchmark forecast against which all other forecasts are compared to in assessing crude

oil return predictability.
7The Akaike information criterion (similarly to the adjusted R2 selection criterion), unlike the Bayesian
information criterion (BIC), is not statistically consistent in the sense of selecting the “true" model
as the sample size increases without bounds. However, Pesaran and Timmermann (1995) note that
in the context of forecasting asset returns where the correct list of regressors is unknown and may be
changing over time, the consistency property of a model selection criterion is not as important as it
may first appear. They suggest that of greater importance is to select a forecasting model that could
be viewed at the time as being a reasonable approximation to the data generating process. Although
AIC is statistically inconsistent, it has the property of yielding an approximate model. Shibata (1976),
for example, shows that AIC strikes a good balance between giving biased estimates when the order of
the model is too low, and the risk of increasing the variance when too many regressors are included.
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4. Empirical results

This section describes our empirical results. We first report results based on full-sample

estimates followed by an out-of-sample analysis of the statistical evidence of return pre-

dictability.

4.1. Full-sample estimation results

Table 3 reports ordinary least-square estimates for the oil return prediction models using

the lag values of each of the individual economic and technical indicator variables at a

time. The table also reports the associated Newey and West (1987) heteroskedasticity-

consistent t-statistics and R2 statistics. Results are reported for the full-sample period

(1987:01-2013:12). From Panel A, 15 of the 28 economic variables, namely Futures return,

Basis, HP, PP, SCS, AUS, CAN, NZ, SA, CTBL, BDI, CAPUTIL, CLI and BCI, display

statistically significant forecasting power at conventional levels for monthly average crude

oil returns. The t-statistics for the significance of the slope coefficient, β, range from 1.83

to 9.38. The R2 statistics for the same 15 variables also range from 1.95% to 34.50%.

Although some of the R2 values may seem small, these are typical values reported in

return predictability literature. Campbell and Thompson (2008), for example, notes that

R2 values as low as 0.5% could still represent economically significant degree of return

predictability. Most of the R2 values exceed this 0.5% threshold. Turning to the results

for the end-of-month returns, only 6 of the 28 economic variables, namely Futures return,

SCS, GSS, CTBL, CLI and BCI, display significant forecasting power for crude oil returns

although the degree of predictability reported is not as strong compared to those based

on the monthly average returns. The results for the filtered return series is displayed in

the last three columns of the table. Clearly, filtering returns for the effect of averaging

reduces the performance of the forecasting models substantially and in some cases leads

to insignificant results. For example, the futures return predictor which display evidence
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of predictability for monthly average returns with an R2 of 8.74% is insignificant in the

case of filtered returns. Another example, is the basis predictor with a significant R2

of about 35% for monthly average returns but reduces to 18% when filtered returns are

instead used in the forecasting model.

The results based on the technical indicator variables are reported in Panel B of

Table 3. Similar conclusions to the analysis based on the economic variables can be

drawn. Whereas some of the 9 of the 18 technical indicators, namely MA(1, 9), MA(1, 12),

MOM(1), MOM(2), MOM(6), MOM(12), VOL(1, 9), VOL(1, 12) display forecasting power

monthly average returns, non of these variables have forecasting power for end-of-month

returns, with performance further reduces in the case of filtered returns.

[Insert Table 3 about here]

4.2. Analysis of out-of-sample crude oil return forecasts

The full-sample tests of predictability reported in Table 3 are not based on truly ex-ante

measures of future expected crude oil returns and would not have been available to a

forecaster in real-time. That is, a forecaster could only have used prevailing information

to estimate the parameters of the predictive models and not the full-sample. In the

sections that follow, we analyse out-of-sample forecasts of crude oil returns to gauge the

value of the forecasting models in real-time.

4.2.1. Calculating out-of-sample return forecasts

We conduct our out-of-sample experiment using a recursive (expanding window) estima-

tion approach as follows. Suppose T observations are available for rt and xi, t (si,t). We

use the first n = 120 observations (1987:01-1996:12)8 as the initial in-sample estimation
8The choice of length of the in-sample estimation period enables us to have a sufficiently long out-of-
sample forecasts evaluation period. Hansen and Timmermann (2012), for example, show that using a
relatively large proportion of the available sample for forecast evaluation provides better size properties
of the test statistics of predictive ability.
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period and the remaining T−n = 204 observations (1997:01-2013:12) as the out-of-sample

forecast evaluation period. The parameters of the models are updated recursively as new

data becomes available. Meaning that the estimation sample always starts in 1987:01

and we expand the estimation window by one month as additional observations become

available. Only data up to month t is therefore used to estimate the model parameters

and generate the pseudo out-of-sample forecast of crude oil returns corresponding to each

predictor variable for the month t+ 1 as

r̂t+1 = α̂t + β̂t xi, t, (19)

where α̂t and β̂t are the OLS estimates of α and β in Equation (9), respectively, from

regressing {rs}n
s=2 on a constant and {xi, s}n−1

s=1 .

4.2.2. Evaluating forecasting performance

Following the convention in the return predictability literature, we evaluate the out-

of-sample predictive accuracy of the forecast from individual and combination models

relative to the forecast from the RW return model using the Campbell and Thompson

(2008) out-of-sample R2 statistic, R2
oos, given by:

R2
oos = 1− MSFE(r̂t)

MSFE(r̄t)
= 1−

∑T
t=n+1 (rt − r̂t)2∑T
t=n+1 (rt − r̄t)2 , (20)

where rn+1 is the realized log oil return at time n + 1 and r̂n+1(r̄n+1) is an alternat-

ive, individual or combination, forecast (RW forecast). The R2
oos statistic measures the

proportional reduction in mean square forecast error (MSFE) for an alternative forecast

relative to the RW forecast. Positive values of this statistic suggest evidence of time-

varying return predictability, and implies that the alternative forecast, because it has a

lower MSFE, outperforms the RW forecast.

We evaluate the statistical significance of the R2
oos statistic using the p-value of the
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MSFE-adjusted statistic of Clark and West (2007). The statistic tests the null hypothesis

of equal out-of-sample predictive ability of the alternative model forecasts against the RW

model forecast. That is, the null hypothesis of R2
oos ≤ 0 against the alternative hypothesis

that R2
oos > 0. Under the null of no crude oil return predictability, the RW return forecast

is expected to have a lower MSFE. The Clark and West (2007) procedure accounts for

the fact that under the null of equal predictive accuracy, the MSFE of the RW model

is expected to be lower compared to the alternative individual or combination models.

This is because the alternative model introduces noise into its forecasts by attempting

to estimate parameters whose population values are zero. As such, finding that the RW

model forecast has a lower MSFE is not clear evidence against the alternative model.

Clark and West propose to adjust the MSFE to account for the noise associated with the

alternative models’ forecast as follows:

MSFE-adjusted = 1
F

T∑
t=n+1

(rt − r̂t)2 − 1
F

T∑
t=n+1

(r̄t − r̂t)2 , (21)

where F is the number of forecasts. They also note that the computationally most con-

venient way of testing the null of equal MSFE is to define:

f̂t = (rt − r̄t)2 − [(r̄t − r̄t)2 − (r̄t − r̂t)2] (22)

and to regress f̂t on a constant and using the resulting t-statistic for a test of zero coeffi-

cient. Although the asymptotic distribution of this test statistic is non-normal, Clark and

West (2007) argue that standard normal critical values provide a good approximation.

They recommend to reject the null of equal MSFE if the test statistic has critical values

greater than 1.282 for a one-sided 10% test, 1.645 for a one-sided 5% test, and 2.326 for

a one-sided 1% test.

Table 5 reports R2
oos values for each of the individual predictive regression and the

combination model forecasts of crude oil returns relative to the random walk with drift
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(RW) forecast. The statistical significance of the R2
oos statistics is based on the test of

equal predictive accuracy of Clark and West (2007). Columns 1-3 of Panel A show that

12 of the 30 economic variables display significant predictive ability for monthly average

crude oil returns. These variables are the same variables that displayed predictive power

when estimating the models using the full sample. The R2
oos values range from 0.76% for

hedging pressure (HP) to 26.72% for futures return which are statistically significant at

conventional levels. Conversely, we find no statistically significant predictive power of the

economic variables for the end-of-month returns, except 3 of the variables namely change

in 3-month treasury bill rate (CTBL), composite leading indicator (CLI) and business

confidence index (BCI). Similar results are obtained for the combination forecasts reported

in Panel B. All the combination forecasts of monthly average returns add substantial

improvements in out-of-sample predictive performance over the RW forecast, consistent

with the findings in studies such Baumeister et al. (2014), Baumeister and Kilian (2015),

Wang et al. (2017), among others. Apart for the Mean combination forecast which records

an R2
oos value of 1.46% and significant at the 5% level, all the other combination forecasts

record R2
oos values well above 5% with the highest value of 22.31% recorded for the Subset

combination forecast which consider up to 7 predictors at a time. All the R2
oos values are

statistically significant at the 1% level. Turning to the results for the end-of-month returns

reported in columns 4-6, we can see that non of the combination forecasts of end-of-month

crude returns display statistically significant forecasting power, as they fail to add any

improvement to the forecast from the RW model.

The univariate and combinations forecast based on the technical indicator variables

are reported in Table 6. Similarly to the out-of-sample results reported for the economic

variables, and consistent with their in-sample results, both individual and combination

forecasts of monthly average returns are statistically significant at conventional levels, and

outperformance the RW forecast. The R2
oos are significantly greater than zero, and com-

bining information from the individual technical indicators lead to sizeable improvements
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in forecasting performance. These results are also consistent with the findings in Yin and

Yang (2016) who find that exploiting information from individual technical indicators or

their combinations outperform a no-change forecast of crude oil returns. Turning to the

end-of-month returns, however, we find that all the individual and combination forecasts

of end-of-month returns fail to beat the forecast from RW model. Similar to the in-sample

results, the use of filtered returns reduce substantially the evidence of predictability. For

example, the statistical significance of out-of-sample R2 statistics reduce by more than

50%.

In summary, we find that whereas individual and combination forecasts of monthly

average crude oil return based on both economic and technical indicator variables display

significant evidence of predictability consistent with the voluminous studies on crude oil

return predictability, such conclusions are completely reversed when we perform the same

forecasting exercise using end-of-month returns. Individual and combination forecasts

of end-of-month oil returns add no improvement to the forecasting performance of the

random walk model. Correcting returns for spurious first-order autocorrelation, and the

downward bias in estimate of variance and covariance substantially weakens the evidence

of predictability. The predictability that remain, however, can be attributed to the bias

in covariance between returns and predictors that persist even after the correction.

Taken together, the in-sample and out-of-sample results confirm the predictions of

Working (1960) and Schwert (1990), and is still consistent with the findings of Wilson

et al. (2001). The evidence of crude oil predictability reported in prior studies can be

attributed to the aforementioned biases introduced as result of averaging prices.

[Insert Table 5 about here]

[Insert Table 6 about here]
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4.2.3. Exploiting the first-order autocorrelation in crude oil returns

It is of interest to check whether the significant first-order autocorrelation reported in

Table 2 could potentially be exploited to increase the power of the forecasting models

against the null hypothesis of no return predictability. Performing this analysis should

provide a quantitative explanation and shed more light on our thesis that the statistical

evidence of crude oil return predictability reported in the vast majority extant literature

could be overstated, and that such evidence would not have existed if end-of-month returns

were used in the forecasting models.

Recall that we found the autocorrelation for the monthly average returns to be more

than twice the autocorrelation of the end-of-month returns. To exploit this feature of the

data, we modify the univariate models to include the lagged return on crude oil and the

predictor. This leads to the following multivariate predictive model

rt+1 = αi + βrt + γixi, t + εi,t+1, (23)

where rt+1 is the realized log return on crude oil from time t − 1 to t, xi, t is a predictor

available at time t, and εi,t+1 is a zero-mean error term. By replacing xi,t with si,t from

Equations (3), (5) and (7) yields the predictive model of crude oil returns based on the

individual technical indicator variables. From the individual predictive forecasts, we then

generate the combination forecasts as described in Section 3.2. We use the same forecast

evaluation metrics detailed in Section 4.2.2. As before, the benchmark forecast is the

random walk with drift (RW) forecast. As a special case, we also estimate a version of

the model in (23) which excludes the economic and technical indicator variables and use

only the lagged returns.

The out-of-sample forecasting for the three return series using their lagged as predict-

ors are reported in Table 4. As can be seen only lagged monthly average returns have

predictive power for next period returns. This is consistent with the significantly high
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first-order autocorrelation documented earlier. Not surprisingly, end-of-month returns

and filtered returns have very low and almost first-order autocorrelation, respectively,

display no statistical evidence of predictability from their lagged values.

Table 7 reports results for the forecasting models in Equation (23) and their combin-

ations. As seen from the table, the predictive performance of the multivariate models of

returns that include its own lagged value and the lagged values of each of the economic

variables at a time improves substantially over the result reported in Table 5. The R2
oos

values for both the multivariate and combination forecasts are greater than 30% and sig-

nificant at the 1% level based on the tests of equal predictive accuracy of Clark and West

(2007). However, predictability is largely absent when we use end-of-month returns. Non

of the multivariate and combination forecasts for end-of-month returns display significant

forecasting ability.

The results based on the technical indicators are reported in Table 8. Again, all

forecasts based on the monthly average returns display statistically significant predictive

ability with improved results over those presented in Table 6. Predictability is, however,

absent when we use end-of-month returns as the dependent variable in the forecasting

models. All the multivariate and combination model forecasts of end-of-month returns

fail to beat the RW forecast.

Figures 4, 5, 6 and 7 reinforce the results in Tables 7 and 8. Figures 4 and 6 report

t-statistics computed recursively for the monthly average returns based on economic and

technical indicator variables, respectively. As seen from graph, the t-statistics of the

coefficient of lagged return in multiple regressions is well above the standard 2.0 cut-off

required to proclaim results as significant, whereas the t-statistics on the lagged predictors

are statistically insignificant. The t-statistics based on lagged returns and economic and

technical indicator variables are statistically insignificant. The results are displayed in

Figures 5 and 7.

Overall, our results show that whereas exploiting the presence of serial correlation in
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monthly average return magnifies the forecasting performance of the models relative to

the RW model forecasts, such evidence is absent when we use end-of-month returns and

filtered returns as the dependent variable in our forecasting models. The results confirm

our earlier predictions that hypothesis that the spurious serial correlation and downward

bias in the estimate of variance of crude oil returns, which is severe in the monthly average

returns,is what partly accounts for the evidence of predictability reported in majority of

the studies on crude oil return predictability.

[Insert Table 4 about here]

[Insert Table 7 about here]

[Insert Table 8 about here]

5. Conclusion

This study comprehensively re-examines the evidence of crude oil return predictability

based on individual predictive regression models and forecast combination methods that

pool information from a large set of 46 economic and technical indicator predictor vari-

ables. Existing studies that examine the predictability of crude oil returns use monthly

averages of daily prices of WTI crude oil spot in computing returns. These studies find

evidence of return predictability from time-varying forecasting models when compared to

forecasts from a simple random walk with drift benchmark model. Following the con-

vention in the return predictability literature, we examine oil return predictability using

end-of-month returns and compare our results to the extant literature that uses monthly

average returns.

Using WTI crude oil returns data from January 1987 to December 2017, we find that

most of the individual economic and technical indicator variables and their combinations

display statistically significant forecasting power for monthly average returns both in- and
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out-of-sample compared to forecast from a simple random walk with drift model consist-

ent with the results in the extant literature. However, these conclusions are completely

reversed when we use end-of-month returns as the dependent variables in our forecasting

models. We attribute the differing inference about predictability for the two return series

to the spurious first-order autocorrelation and the downward bias in estimates of variance

and covariance induced by averaging leading to biased estimates of beta and associated

standard errors. These findings are consistent with the studies of Working (1934, 1960),

Schwert (1990) and Wilson et al. (2001). In addition, correcting returns for the effect

of averaging using the filtering procedure in Schwert (1990) substantially weakens the

evidence of predictability. The predictability that remains can be attributed to the bias

in the estimates of covariance between returns and predictors that persists even after the

correction.

As a further test of the effect of spurious autocorrelation on predictability, we estimate

multivariate regression models with lagged oil return and each of the predictors at a

time as independent variables. The results from this test shows that whereas exploiting

the presence of serial correlation in monthly average returns substantially magnifies the

forecasting performance of our models relative to the RW forecast, such evidence is still

non-existent when we perform the same exercise with end-of-month returns. This confirms

our hypothesis that the presence of serial correlation in monthly average crude oil returns,

together with other biases, induced by averaging is what accounts for the evidence of

predictability.
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Figure 1: Crude Oil Returns

Notes. This figure plots the time series of monthly WTI crude oil returns (percentage terms)
for two return series: average monthly and end-of-month returns, respectively. Average monthly
returns are computed from monthly prices which are averages of daily prices. The end-of-month
returns are computed using end-of-month prices. The sample period is from January 1987 to
December 2016.
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Figure 2: Sample Autocorrelation Function of Crude Oil Returns

Notes. This figure plots the the sample autocorrelation function of monthly WTI crude oil returns (in
percent) for three return series: monthly average, end-of-month, and filtered returns. Monthly average
returns are computed from monthly averages of daily prices, end-of-month returns from end-of-month
prices, and filtered returns using the filtering procedure in Schwert (1990). The sample period is 1987:01-
2016:12.
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Figure 3: Sample Autocorrelation Function of Squared Crude Oil Returns

Notes. This figure plots the the sample autocorrelation function of squared monthly WTI crude oil returns
(in percent) for three return series: monthly average, end-of-month, and filtered returns. Monthly average
returns are computed from monthly averages of daily prices, end-of-month returns from end-of-month
prices, and filtered returns using the filtering procedure in Schwert (1990). The sample period is 1987:01-
2016:12.
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Table 1: Price Series used in Computing Returns in the Return Predictability
Literature

Price series used in Evidence of
Article Journal published computing returns Predictability

Panel A: Crude oil return predictability
Baumeister, Kilian, and Zhou (2018) Macroeconomic Dynamics Monthly average of daily prices Yes
Zhang et al. (2018) Energy Economics Monthly average of daily prices Yes
Wang et al. (2017) Energy Economics Monthly average of daily prices Yes
Yin and Yang (2016) Energy Economics Monthly average of daily prices Yes
Naser (2016) Energy Economics Monthly average of daily prices Yes
Drachal (2016) Energy Economics Monthly average of daily prices Yes
Wang et al. (2015) Energy Economics Monthly average of daily prices Yes
Baumeister and Kilian (2015) Journal of Business and Economic Statistics Monthly average of daily prices Yes
Baumeister and Kilian (2014) International Economic Review Monthly average of daily prices Yes
Baumeister et al. (2014) Enery Economics Monthly average of daily prices Yes
Alquist et al. (2013) Handbook of Economic Forecasting Monthly average of daily prices No
Baumeister and Kilian (2012) Journal of Business and Economic Statistics Monthly average of daily prices Yes
Alquist and Kilian (2010) Journal of Applied Econometrics End-of-month No
Ye et al. (2006) Energy Policy Monthly average of daily prices Yes
Ye, Zyren, and Shore (2005) International Journal of Forecasting Monthly average of daily prices Yes

Panel B: Other commodity return predictability
Gargano and Timmermann (2014) International Journal of Forecasting End-of-month Yes
Chinn and Coibion (2014) Journal of Futures Markets End-of-month Yes
Acharya et al. (2013) Journal of Financial Economics End-of-month Yes
Gorton et al. (2013) Review of Finance End-of-month No
Hong and Yogo (2012) Journal of Financial Economics End-of-month Yes
Chen et al. (2010) The Quarterly Journal of Economics End-of-month Yes
Bessembinder and Chan (1992) Journal of Financial Economics End-of-month Yes

Panel C: Equity risk premium predictability literature
Choi, Jacewitz, and Park (2016) Journal of Econometrics End-of-month No
Rapach, Ringgenberg, and Zhou (2016) Journal of Financial Economics End-of-month Yes
Neely et al. (2014) Management Science End-of-month Yes
Rapach, Strauss, and Zhou (2013) Journal of Finance End-of-month Yes
Ferreira and Santa-Clara (2011) Journal of Financial Economics End-of-month Yes
Rapach et al. (2010) Review of Financial Studies End-of-month Yes
Campbell and Thompson (2008) The Review of Financial Studies End-of-month Yes
Welch and Goyal (2008) Journal of Financial Economics End-of-month No
Lanne (2002) The Review of and Economics Statistics End-of-month No

Panel D: Bond return predictability
Zhong and Wang (2018) Journal of Empirical Finance End-of-month Yes
Lin et al. (2017) Management Science End-of-month Yes
Sarno et al. (2016) Journal of Empirical Finance End-of-month Yes
Lin, Wang, and Wu (2014) Journal of Financial Markets End-of-month Yes
Greenwood and Hanson (2013) The Review of Financial Studies End-of-month Yes
Ludvigson and Ng (2009) The Review of Financial Studies End-of-month Yes
Cochrane and Piazzesi (2005) American Economic Review End-of-month Yes

Panel E: Currency return predictability
Anatolyev, Gospodinov, Jamali, and Liu (2017) Journal of Empirical Finance End-of-month Yes
Ahmed, Liu, and Valente (2016) International Journal of Forecasting End-of-month No
Li et al. (2015) Journal of Financial Econometrics End-of-month Yes
Levich and Potì (2015) International Journal of Forecasting End-of-month Yes
Rossi (2013) Journal of Economic Literature End-of-month Yes
Molodtsova and Papell (2009) Journal of International Economics End-of-month No
Della Corte, Sarno, and Tsiakas (2008) The Review of Financial Studies End-of-month Yes

Notes. This table list the articles on studies of return predictability across commodities, stock,
bond and currency markets, the journals that published the articles, the prices series used in
computing returns (monthly averages of daily prices or end-of-month prices) in the articles, and
whether or not they found evidence of return predictability.
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Table 2: Summary Statistics
Variable Mean Std. dev. Skew Kurt Auto Cov(y1, x) Cov(y2, x) Cov(y3, x)

Panel A: Returns
Monthly average (y1) 0.107 8.282 −0.237 4.993 0.286***
End-of-month (y2) 0.087 9.161 −0.101 4.505 0.150**
Filtered (y3) 0.119 9.882 −0.001 4.274 0.025

Panel B: Predictors (x)
Panel B1: Economic variables

Futures return 0.317 9.177 −0.147 4.592 0.156 54.729 83.931 64.648
Basis −0.011 0.494 2.486 21.850 0.184 0.498 0.403 0.476
HP 4.067 9.516 0.563 3.167 0.882 13.570 14.653 16.124
PP 0.073 4.729 −0.010 4.827 −0.215 10.502 18.232 16.174
OI 0.784 6.741 0.279 5.718 −0.133 6.631 7.578 9.501
SCS 0.304 9.265 −0.126 4.592 0.162 55.518 84.818 65.412
GSS −0.015 2.548 −0.645 10.403 −0.224 −0.496 2.254 −1.703
HSS −0.009 1.991 1.541 21.658 −0.276 2.661 3.715 2.980
GOI 0.103 1.119 0.267 3.275 −0.051 −0.710 −0.805 −0.553
GOP 0.103 0.989 −0.560 9.768 −0.070 −0.761 −0.179 −0.960
AUS 0.022 3.339 −0.573 5.307 0.028 6.200 10.056 6.982
CAN 0.008 2.217 −0.606 8.084 −0.064 4.572 7.284 4.946
NZ 0.078 3.432 −0.446 5.095 −0.033 6.192 7.811 6.628
SA −0.510 4.021 −0.448 4.491 0.018 6.594 7.270 6.331
S&P 500 0.715 4.325 −0.809 5.640 0.073 1.510 2.885 1.571
TBL 3.225 2.518 0.124 1.798 0.998 0.815 0.685 0.735
CTBL −0.014 0.187 −1.069 5.997 0.476 0.170 0.229 0.163
YS 4.236 1.508 0.116 2.539 0.985 −0.918 −0.906 −0.874
DFY 0.975 0.385 3.081 16.730 0.962 −0.341 −0.267 −0.298
TMS1Y 0.343 0.269 0.062 2.846 0.944 −0.065 −0.093 −0.067
TMS2Y 0.621 0.500 0.165 1.785 0.982 −0.056 −0.038 −0.057
TMS5Y 0.549 0.422 0.236 1.930 0.984 −0.135 −0.155 −0.147
VIX 20.120 7.755 1.860 8.365 0.816 −7.351 −9.048 −7.208
REA 0.799 27.248 −0.111 4.792 0.947 22.358 18.632 18.492
BDI 0.088 18.663 −1.417 13.006 0.138 30.519 34.936 31.035
INFL 0.218 0.274 −1.176 10.929 0.410 0.174 0.042 −0.044
CAPUTIL −0.018 0.743 −0.723 4.961 0.229 1.004 1.179 1.068
INDPRO −0.053 2.194 −8.768 95.279 0.017 0.793 0.798 0.598

v



Table 2: continued
Variable Mean Std. dev. Skew Kurt Auto Cov(y1, x) Cov(y2, x) Cov(y3, x)

Panel B1: Technical indicator variables
MA(1, 9) 55.556 49.760 −0.224 1.050 0.639 183.154 176.071 179.338
MA(1, 12) 56.389 49.659 −0.258 1.066 0.728 166.439 152.668 162.207
MA(2, 9) 56.667 49.623 −0.269 1.072 0.751 142.284 104.807 127.106
MA(2, 12) 58.611 49.321 −0.350 1.122 0.782 117.192 79.506 103.747
MA(3, 9) 57.500 49.503 −0.303 1.092 0.772 90.081 41.095 71.943
MA(3, 12) 57.500 49.503 −0.303 1.092 0.806 66.077 28.814 47.564
MOM(1) 53.889 49.918 −0.156 1.024 −0.031 217.869 349.762 267.145
MOM(2) 54.444 49.871 −0.178 1.032 0.315 270.462 263.338 288.747
MOM(3) 56.111 49.694 −0.246 1.061 0.537 213.713 198.499 203.033
MOM(6) 56.944 49.584 −0.280 1.079 0.659 150.368 139.273 151.460
MOM(9) 58.611 49.321 −0.350 1.122 0.656 92.429 103.990 89.828
MOM(12) 57.778 49.460 −0.315 1.099 0.697 122.135 118.317 123.612
VOL(1, 9) 59.167 49.221 −0.373 1.139 0.424 167.753 182.022 166.528
VOL(1, 12) 60.833 48.880 −0.444 1.197 0.545 159.945 157.998 159.432
VOL(2, 9) 58.889 49.272 −0.361 1.131 0.678 130.873 85.340 113.103
VOL(2, 12) 58.333 49.369 −0.338 1.114 0.794 114.931 91.840 103.146
VOL(3, 9) 58.056 49.415 −0.326 1.107 0.726 63.639 43.784 42.740
VOL(3, 12) 58.333 49.369 −0.338 1.114 0.840 79.780 62.358 65.642

Notes. This table reports the summary statistics for monthly WTI crude oil returns (in percent) and
predictor variables (in percent) used in this article. We report the mean, standard deviation, skewness,
kurtosis, and first-order autocorrelation (Auto), and the covariance between returns and the predictors.
Returns are generated using monthly averages of daily prices (monthly average returns), end-of-month
prices extracted from daily prices (end-of-month returns), and the returns corrected for autocorrelation
and bias in variance estimates using the filtering procedure in Schwert (1990) (filtered returns). **,
and *** indicate statistical significance at the 5% and 1% levels, respectively. The sample period is
1987:01-2016:12.
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Table 4: Statistical Evaluation of Monthly Real Crude Oil Return Predictability from lagged
Returns

RW forecast Lagged return MSFE-
Predictor MSFE MSFE R2

oos (%) adjusted
Monthly average returns 75.51 71.38 5.47 2.58**
End-of-month returns 91.44 91.44 0.07 1.01
Filtered returns 112.75 112.78 −0.03 −0.01

Notes. This table reports out-of-sample results of log WTI crude oil returns based on lagged oil return.
RW is the random walk with drift benchmark forecast. MSFE is the mean squared forecast error. The
R2

oos statistic measures the proportional reduction in MSFE for the competing forecasts given in the first
column relative to the RW forecast. Statistical significance for the R2

oos statistic is based on the p-value for
the Clark and West (2007) MSFE-adjusted statistic. This statistic tests the null hypothesis that the RW
forecast MSFE is less than or equal to the competing forecast MSFE against the alternative hypothesis
that the HA forecast MSFE is greater than or equal to the competing forecast MSFE. Results are reported
for the full out-of-sample evaluation period 1997:01-2016:12. *, **, and *** indicate significance at the
10%, 5%, and 1% levels, respectively.
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Table 5: Statistical Evaluation of Real Crude Oil Return Predictability from lagged
Economic Variables

Monthly average returns End-of-month returns Filtered returns

MSFE- MSFE- MSFE-
Predictor MSFE R2

oos (%) adjusted MSFE R2
oos (%) adjusted MSFE R2

oos (%) adjusted

RW 75.51 91.51 112.75
Panel A: Individual predictive model forecasts

Futures return 53.56 29.07 5.69*** 91.46 0.05 0.96 99.43 11.81 4.20***
Basis 74.23 1.70 1.61* 90.61 0.98 1.13 111.76 0.87 1.41*
HP 76.79 −1.70 1.22 91.83 −0.35 −0.35 114.51 −1.56 −0.34
PP 73.47 2.69 2.84** 91.62 −0.13 0.45 114.52 −1.57 0.33
OI 75.61 −0.14 −0.28 91.89 −0.41 −1.65 113.13 −0.34 −1.42
SCS 53.82 28.72 5.67*** 91.50 0.01 0.94 99.74 11.53 4.16***
GSS 77.26 −2.32 −1.44 91.17 0.36 1.06 114.83 −1.85 −0.98
HSS 75.37 0.18 0.55 91.76 −0.28 −0.36 113.04 −0.25 −0.84
GOI 75.78 −0.36 −0.89 92.14 −0.69 −0.51 113.40 −0.58 −2.16
GOP 75.67 −0.21 0.14 92.56 −1.15 0.17 112.99 −0.21 −0.18
AUS 72.03 4.61 2.60*** 93.06 −1.69 −0.65 110.47 2.02 1.95*
CAN 71.23 5.67 3.20*** 92.49 −1.07 −0.87 109.42 2.95 2.47**
NZ 75.30 0.27 1.11 93.87 −2.58 −1.56 113.60 −0.76 0.03
SA 74.25 1.67 2.29** 92.32 −0.89 −0.53 112.09 0.58 1.34*
S&P 500 76.96 −1.92 −0.44 92.30 −0.86 −0.22 114.43 −1.49 −0.54
TBL 76.39 −1.17 −1.34 92.44 −1.02 −1.51 113.92 −1.04 −1.65
CTBL 74.21 1.72 1.52* 89.69 1.98 1.88** 111.54 1.07 1.33*
YS 76.81 −1.72 −0.48 92.93 −1.55 −0.82 114.45 −1.51 −0.64
DFY 78.40 −3.83 −0.07 93.85 −2.57 −0.31 116.64 −3.45 −0.37
TMS1Y 76.13 −0.82 −0.75 92.17 −0.73 −1.02 113.62 −0.77 −1.04
TMS2Y 75.94 −0.58 −1.29 92.06 −0.61 −1.36 113.38 −0.56 −1.59
TMS5Y 76.74 −1.63 −0.32 92.85 −1.47 −0.60 114.31 −1.39 −0.50
VIX 75.38 0.17 0.57 92.02 −0.57 0.37 113.19 −0.39 0.37
REA 76.60 −1.45 −0.42 92.90 −1.52 −0.89 114.52 −1.57 −1.01
BDI 73.78 2.29 1.71** 92.91 −1.53 0.10 112.06 0.61 1.36*
INFL 76.61 −1.46 −0.29 92.59 −1.19 −1.10 114.15 −1.25 −0.93
CAPUTIL 76.21 −0.92 0.53 92.42 −0.99 −1.03 114.42 −1.48 −0.03
INDPRO 76.07 −0.74 −0.81 92.07 −0.61 −1.46 113.05 −0.27 −1.03

Panel B: Combination forecasts
Mean 71.41 5.43 4.26*** 91.55 −0.05 0.01 110.41 2.07 2.64***
Median 74.96 0.72 2.11** 91.55 −0.05 −0.25 112.60 0.13 0.69
Weighted mean 70.15 7.10 4.63*** 91.55 −0.05 0.02 110.11 2.34 2.78***
DMSFE (θ = 0.9) 70.17 7.07 4.12*** 91.55 −0.05 0.03 110.67 1.84 2.41**
ABMA 72.34 4.19 3.86*** 91.56 −0.06 0.01 110.68 1.83 2.49**
Subset (k = 2) 68.19 9.69 4.37*** 91.71 −0.22 −0.01 108.69 3.60 2.72***
Subset (k = 3) 65.67 13.03 4.45*** 91.94 −0.48 −0.04 107.45 4.70 2.77***
Subset (k = 4) 63.73 15.59 4.51*** 92.24 −0.80 −0.06 106.61 5.44 2.79***
Subset (k = 5) 62.17 17.66 4.56*** 92.58 −1.17 −0.08 106.01 5.98 2.83***
Subset (k = 6) 60.98 19.24 4.61*** 92.99 −1.62 −0.12 105.70 6.25 2.84***
Subset (k = 7) 60.08 20.43 4.64*** 93.43 −2.10 −0.15 105.53 6.40 2.86***
PC (ic = aic) 61.99 17.90 4.66*** 94.44 −3.21 0.00 109.08 3.25*** 2.77
PC (ic = bic) 62.45 17.30 4.61*** 93.02 −1.65 0.17 110.44 2.05 2.37**
PC (ic = R2) 61.61 18.41 4.71*** 94.39 −3.15 0.14 108.87 3.44 2.82***

Notes. This table reports out-of-sample results for the individual and combination forecasts of log WTI crude oil returns
based on 28 economic variables. RW is the random walk with drift benchmark forecast. MSFE is the mean squared forecast
error. The R2

oos statistic measures the proportional reduction in MSFE for the competing forecasts given in the first column
relative to the RW forecast. Statistical significance for the R2

oos statistic is based on the p-value for the Clark and West
(2007) MSFE-adjusted statistic. This statistic tests the null hypothesis that the RW forecast MSFE is less than or equal
to the competing forecast MSFE against the alternative hypothesis that the RW forecast MSFE is greater than or equal
to the competing forecast MSFE. Results are reported for the full out-of-sample evaluation period 1997:01-2016:12. *, **,
and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 6: Statistical Evaluation of Monthly Real Crude Oil Return Predictability from lagged
Technical Indicators

Monthly average returns End-of-month returns End-of-month returns
MSFE- MSFE- MSFE-

Predictor MSFE R2
oos (%) adjusted MSFE R2

oos (%) adjusted MSFE R2
oos (%) adjusted

RW 75.51 91.51 112.75
Panel A: Individual predictive model forecasts

MA(1, 9) 73.93 2.08 2.11** 91.93 −0.47 −0.98 112.76 −0.01 0.31
MA(1, 12) 73.83 2.22 2.15** 91.78 −0.30 −0.24 112.59 0.14 0.66
MA(2, 9) 74.87 0.84 1.28 92.33 −0.90 −0.73 113.28 −0.47 −0.64
MA(2, 12) 75.63 −0.16 0.02 92.48 −1.07 −1.15 113.91 −1.04 −1.69
MA(3, 9) 76.12 −0.81 −1.68 92.28 −0.85 −0.93 113.75 −0.89 −0.76
MA(3, 12) 76.55 −1.38 −1.90 92.61 −1.21 −1.12 114.56 −1.61 −1.26
MOM(1) 65.12 13.75 6.04*** 92.13 −0.68 −0.94 107.26 4.86 3.43***
MOM(2) 68.60 9.14 4.79*** 91.63 −0.13 0.02 109.83 2.59 2.64***
MOM(3) 72.73 3.68 2.88*** 92.16 −0.72 −0.50 112.24 0.45 1.12
MOM(6) 74.75 1.01 1.34* 92.37 −0.94 −0.54 113.48 −0.65 −0.71
MOM(9) 74.91 0.79 1.23 92.19 −0.74 −0.84 113.01 −0.23 −0.25
MOM(12) 74.68 1.09 1.54* 91.83 −0.35 −0.71 112.89 −0.13 0.30
VOL(1, 9) 73.29 2.94 2.51** 92.03 −0.58 −0.80 112.20 0.49 1.00
VOL(1, 12) 73.97 2.04 1.99** 91.95 −0.48 −1.92 112.65 0.09 0.49
VOL(2, 9) 75.72 −0.28 −0.16 92.72 −1.33 −1.33 114.17 −1.27 −1.56
VOL(2, 12) 74.53 1.29 1.63* 92.18 −0.74 −1.58 112.88 −0.12 0.04
VOL(3, 9) 76.16 −0.87 −1.58 92.93 −1.56 −1.80 113.85 −0.98 −2.25
VOL(3, 12) 75.31 0.26 0.68 92.07 −0.61 −2.03 113.12 −0.33 −0.62

Panel B: Combination forecasts
Mean 72.83 3.55 3.52*** 92.05 −0.59 −1.98 112.09 0.59 1.35*
Median 73.91 2.12 2.36** 92.13 −0.69 −1.62 112.62 0.11 0.42
Weighted mean 72.65 3.79 3.66*** 92.05 −0.59 −1.98 112.05 0.62 1.40*
DMSFE (θ = 0.9) 72.80 3.59 3.42*** 92.19 −0.75 −2.76 112.31 0.39 0.97
ABMA 72.99 3.33 3.39*** 92.04 −0.59 −1.98 112.12 0.56 1.31
Subset (k = 2) 71.19 5.71 4.16*** 92.47 −1.05 −2.40 111.67 0.96 1.57*
Subset (k = 3) 70.04 7.24 4.47*** 92.84 −1.45 −2.63 111.43 1.17 1.65*
Subset (k = 4) 69.27 8.26 4.62*** 93.18 −1.83 −2.67 111.36 1.23 1.68*
Subset (k = 5) 68.79 8.90 4.70*** 93.53 −2.21 −2.58 111.41 1.18 1.69*
Subset (k = 6) 68.51 9.27 4.75*** 93.88 −2.59 −2.42 111.56 1.05 1.69*
Subset (k = 7) 68.36 9.47 4.78*** 94.25 −3.00 −2.22 111.80 0.84 1.68*
PC (ic = aic) 67.97 9.98 5.06*** 92.64 −1.24 −1.95 112.17 0.51 1.71**
PC (ic = bic) 68.20 9.67 4.71*** 92.24 −0.80 −1.34 109.90 2.53 2.38**
PC (ic = R2) 67.58 10.49 5.21*** 93.34 −2.00 −2.66 111.14 1.42 2.21**

Notes. This table reports out-of-sample results for the individual and combination forecasts of log WTI crude oil returns
based on 18 technical indicator variables. RW is the random walk with drift benchmark forecast. MSFE is the mean squared
forecast error. The R2

oos statistic measures the proportional reduction in MSFE for the competing forecasts given in the
first column relative to the RW forecast. Statistical significance for the R2

oos statistic is based on the p-value for the Clark
and West (2007) MSFE-adjusted statistic. This statistic tests the null hypothesis that the RW forecast MSFE is less than
or equal to the competing forecast MSFE against the alternative hypothesis that the HA forecast MSFE is greater than or
equal to the competing forecast MSFE. Results are reported for the full out-of-sample evaluation period 1997:01-2016:12.
*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 7: Statistical Evaluation of Real Crude Oil Return Predictability from Lagged Returns
and Economic Variables

Monthly average returns End-of-month returns

MSFE- MSFE-
Predictor MSFE R2

oos (%) adjusted MSFE R2
oos (%) adjusted

RW 75.51 91.51
Panel A: Individual predictive model forecasts

Futures return 50.67 32.90 6.72*** 93.29 −1.95 0.70
Basis 70.68 6.39 2.79*** 90.73 0.85 1.31
HP 72.23 4.34 2.79*** 91.48 0.03 1.06
PP 71.88 4.80 3.14*** 91.80 −0.33 0.88
OI 71.63 5.14 2.52** 91.69 −0.20 0.89
SCS 50.89 32.61 6.71*** 91.72 −0.24 1.49*
GSS 72.56 3.91 2.39** 91.29 0.24 1.37*
HSS 71.58 5.20 2.54** 91.39 0.13 1.06
GOI 71.89 4.79 2.47** 92.34 −0.91 0.68
GOP 71.47 5.34 2.54** 92.47 −1.05 0.93
AUS 69.95 7.36 2.83*** 92.97 −1.61 0.40
CAN 69.45 8.02 3.04*** 92.43 −1.01 0.55
NZ 71.90 4.78 2.52** 93.43 −2.11 0.21
SA 71.25 5.63 2.67*** 92.45 −1.03 0.67
S&P 500 return 72.33 4.21 2.47** 92.31 −0.88 0.64
TBL 72.07 4.56 2.44** 92.26 −0.83 0.61
CTBL 70.59 6.51 2.60*** 89.94 1.71 1.84
YS 72.29 4.27 2.18** 92.55 −1.14 0.50
DFY 73.55 2.60 1.90** 93.29 −1.95 0.52
TMS1Y 71.91 4.76 2.52** 92.06 −0.61 0.72
TMS2Y 71.76 4.96 2.50** 91.97 −0.51 0.75
TMS5Y 72.22 4.35 2.31** 92.51 −1.10 0.59
VIX 71.59 5.19 2.08** 92.18 −0.73 0.78
REA 72.48 4.01 2.39** 92.86 −1.48 0.49
BDI 71.14 5.78 2.54** 93.33 −1.99 0.46
INFL 72.45 4.04 2.71*** 92.48 −1.06 0.52
CAPUTIL 72.26 4.30 2.28** 92.16 −0.72 0.66
INDPRO 71.57 5.22 2.53** 91.78 −0.30 0.84

Panel B: Combination forecasts
Mean 68.29 9.55 3.19*** 91.59 −0.09 0.94
Median 71.20 5.70 2.61*** 91.45 0.06 1.01
Weighted mean 67.14 11.08 3.44*** 91.59 −0.09 0.94
DMSFE (θ = 0.9) 67.34 10.82 3.39*** 91.83 −0.36 0.81
ABMA 69.17 8.39 3.00*** 91.59 −0.10 0.94
Subset (k = 2) 68.00 9.95 4.24*** 91.63 −0.13 0.15
Subset (k = 3) 65.48 13.28 4.34*** 91.84 −0.37 0.12
Subset (k = 4) 63.51 15.88 4.44*** 92.12 −0.67 0.11
Subset (k = 5) 61.95 17.96 4.54*** 92.46 −1.04 0.08
Subset (k = 6) 60.74 19.56 4.61*** 92.84 −1.46 0.05
Subset (k = 7) 59.72 20.91 4.69*** 93.23 −1.88 0.03
PC (ic = aic) 61.71 18.27 5.00*** 94.00 −2.72 0.23
PC (ic = bic) 62.32 17.46 4.93*** 93.19 −1.84 0.40
PC (ic = R2) 61.20 18.95 5.08*** 93.75 −2.46 0.42

Notes. This table reports out-of-sample results for the individual and combination forecasts of log WTI crude oil returns
based on lagged oil return and 30 economic variables. RW is the random walk with drift benchmark forecast. MSFE is the
mean squared forecast error. The R2

oos statistic measures the proportional reduction in MSFE for the competing forecasts
given in the first column relative to the RW forecast. Statistical significance for the R2

oos statistic is based on the p-value
for the Clark and West (2007) MSFE-adjusted statistic. This statistic tests the null hypothesis that the RW forecast MSFE
is less than or equal to the competing forecast MSFE against the alternative hypothesis that the HA forecast MSFE is
greater than or equal to the competing forecast MSFE. Results are reported for the full out-of-sample evaluation period
1997:01-2016:12. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 8: Statistical Evaluation of Monthly Real Crude Oil Return Predictability from lagged
Returns and Technical Indicators

Monthly average returns End-of-month returns
MSFE- MSFE-

Predictor MSFE R2
oos (%) adjusted MSFE R2

oos (%) adjusted
RW 75.51 91.51

Panel A: Individual predictive model forecasts
MA(1, 9) 71.57 5.22 2.55** 91.43 0.08 1.16
MA(1, 12) 71.39 5.45 2.63*** 91.96 −0.50 0.72
MA(2, 9) 72.21 4.37 2.38** 92.46 −1.04 0.61
MA(2, 12) 72.55 3.92 2.33** 92.45 −1.04 0.61
MA(3, 9) 72.14 4.47 2.50** 92.27 −0.83 0.70
MA(3, 12) 72.73 3.68 2.37** 92.52 −1.11 0.58
MOM(1) 65.64 13.07 5.35*** 90.67 0.91 1.52*
MOM(2) 69.27 8.26 3.62*** 92.32 −0.89 0.75
MOM(3) 71.14 5.79 2.81*** 91.91 −0.45 0.75
MOM(6) 72.36 4.17 2.30** 91.92 −0.45 0.95
MOM(9) 71.73 5.00 2.47** 91.90 −0.43 0.92
MOM(12) 71.48 5.33 2.57** 91.97 −0.50 0.77
VOL(1, 9) 71.12 5.81 2.64*** 92.11 −0.67 0.92
VOL(1, 12) 71.41 5.43 2.55** 92.48 −1.06 0.62
VOL(2, 9) 72.75 3.66 2.28** 92.73 −1.34 0.38
VOL(2, 12) 71.87 4.82 2.43** 92.44 −1.02 0.50
VOL(3, 9) 72.31 4.24 2.36** 92.79 −1.40 0.33
VOL(3, 12) 71.80 4.91 2.48** 92.15 −0.71 0.65

Panel B: Combination forecasts
Mean 70.91 6.09 2.74*** 91.88 −0.41 0.80
Median 71.45 5.37 2.57** 92.04 −0.59 0.71
Weighted mean 70.86 6.16 2.76*** 91.88 −0.41 0.80
DMSFE (θ = 0.9) 70.76 6.28 2.78*** 92.30 −0.86 0.57
ABMA 71.01 5.96 2.71 91.88 −0.41 0.81
Subset (k = 2) 70.83 6.19 3.94*** 92.25 −0.81 −1.55
Subset (k = 3) 69.73 7.65 4.16*** 92.50 −1.09 −1.44
Subset (k = 4) 69.05 8.55 4.28*** 92.72 −1.32 −1.26
Subset (k = 5) 68.66 9.06 4.36*** 92.91 −1.53 −1.06
Subset (k = 6) 68.47 9.33 4.41*** 93.10 −1.74 −0.85
Subset (k = 7) 68.41 9.40 4.45*** 93.27 −1.93 −0.64
PC (ic = aic) 68.83 8.84*** 4.82 92.39 −0.97 0.65
PC (ic = bic) 69.12 8.46*** 4.35 92.50 −1.09 0.61
PC (ic = R2) 68.37 9.45 4.97*** 92.57 −1.16 0.60
Notes. This table reports out-of-sample results for the individual and combination forecasts of log WTI crude oil returns
based on lagged oil return and 18 technical indicator variables. RW is the random walk with drift benchmark forecast. MSFE
is the mean squared forecast error. The R2

oos statistic measures the proportional reduction in MSFE for the competing
forecasts given in the first column relative to the RW forecast. Statistical significance for the R2

oos statistic is based on the
p-value for the Clark and West (2007) MSFE-adjusted statistic. This statistic tests the null hypothesis that the RW forecast
MSFE is less than or equal to the competing forecast MSFE against the alternative hypothesis that the HA forecast MSFE
is greater than or equal to the competing forecast MSFE. Results are reported for the full out-of-sample evaluation period
1997:01-2016:12. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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